Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.

نویسندگان

  • Ohgew Kweon
  • Seong-Jae Kim
  • Ricky D Holland
  • Hongyan Chen
  • Dae-Wi Kim
  • Yuan Gao
  • Li-Rong Yu
  • Songjoon Baek
  • Dong-Heon Baek
  • Hongsik Ahn
  • Carl E Cerniglia
چکیده

This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology.

Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in ...

متن کامل

Functional robustness of a polycyclic aromatic hydrocarbon metabolic network examined in a nidA aromatic ring-hydroxylating oxygenase mutant of Mycobacterium vanbaalenii PYR-1.

In this study, we obtained over 4,000 transposon mutants of Mycobacterium vanbaalenii PYR-1 and analyzed one of the mutants, 8F7, which appeared to lose its ability to degrade pyrene while still being able to degrade fluoranthene. This mutant was identified to be defective in nidA, encoding an aromatic ring-hydroxylating oxygenase (RHO), known to be involved in the initial oxidation step of pyr...

متن کامل

Regio- and stereoselective metabolism of 7,12-dimethylbenz[a]anthracene by Mycobacterium vanbaalenii PYR-1.

The degradation of 7,12-dimethylbenz[a]anthracene (DMBA), a carcinogenic polycyclic aromatic hydrocarbon, by cultures of Mycobacterium vanbaalenii PYR-1 was studied. When M. vanbaalenii PYR-1 was grown in the presence of DMBA for 136 h, high-pressure liquid chromatography (HPLC) analysis showed the presence of four ethyl acetate-extractable compounds and unutilized substrate. Characterization o...

متن کامل

Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1.

Mycobacterium vanbaalenii PYR-1 is able to metabolize a wide range of low- and high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs). A 20-kDa protein was upregulated in PAH-metabolizing M. vanbaalenii PYR-1 cells compared to control cultures. The differentially expressed protein was identified as a beta subunit of the terminal dioxygenase using mass spectrometry. PCR with degener...

متن کامل

Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1.

Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 193 17  شماره 

صفحات  -

تاریخ انتشار 2011